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Abelian groups

This chapter introduces the notion of an abelian group. This is an abstrac-
tion that models many different algebraic structures, and yet despite the
level of generality, a number of very useful results can be easily obtained.

8.1 Definitions, basic properties, and examples

Definition 8.1. An abelian group is a set G together with a binary oper-
ation ? on G such that

(i) for all a, b, c ∈ G, a ? (b ? c) = (a ? b) ? c (i.e., ? is associative),

(ii) there exists e ∈ G (called the identity element) such that for all
a ∈ G, a ? e = a = e ? a,

(iii) for all a ∈ G there exists a′ ∈ G (called the inverse of a) such that
a ? a′ = e = a′ ? a,

(iv) for all a, b ∈ G, a ? b = b ? a (i.e., ? is commutative).

While there is a more general notion of a group, which may be defined
simply by dropping property (iv) in Definition 8.1, we shall not need this
notion in this text. The restriction to abelian groups helps to simplify the
discussion significantly. Because we will only be dealing with abelian groups,
we may occasionally simply say “group” instead of “abelian group.”

Before looking at examples, let us state some very basic properties of
abelian groups that follow directly from the definition:

Theorem 8.2. Let G be an abelian group with binary operation ?. Then
we have:

(i) G contains only one identity element;

(ii) every element of G has only one inverse.
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Proof. Suppose e, e′ are both identities. Then we have

e = e ? e′ = e′,

where we have used part (ii) of Definition 8.1, once with e′ as the identity,
and once with e as the identity. That proves part (i) of the theorem.

To prove part (ii) of the theorem, let a ∈ G, and suppose that a has two
inverses, a′ and a′′. Then using parts (i)–(iii) of Definition 8.1, we have

a′ = a′ ? e (by part (ii))

= a′ ? (a ? a′′) (by part (iii) with inverse a′′ of a)

= (a′ ? a) ? a′′ (by part (i))

= e ? a′′ (by part (iii) with inverse a′ of a)

= a′′ (by part (ii)). 2

These uniqueness properties justify use of the definite article in Defini-
tion 8.1 in conjunction with the terms “identity element” and “inverse.”
Note that we never used part (iv) of the definition in the proof of the above
theorem.

Abelian groups are lurking everywhere, as the following examples illus-
trate.

Example 8.1. The set of integers Z under addition forms an abelian group,
with 0 being the identity, and −a being the inverse of a ∈ Z. 2

Example 8.2. For integer n, the set nZ = {nz : z ∈ Z} under addition
forms an abelian group, again, with 0 being the identity, and n(−z) being
the inverse of nz. 2

Example 8.3. The set of non-negative integers under addition does not
form an abelian group, since additive inverses do not exist for positive inte-
gers. 2

Example 8.4. The set of integers under multiplication does not form an
abelian group, since inverses do not exist for integers other than ±1. 2

Example 8.5. The set of integers {±1} under multiplication forms an
abelian group, with 1 being the identity, and −1 its own inverse. 2

Example 8.6. The set of rational numbers Q = {a/b : a, b ∈ Z, b 6= 0}
under addition forms an abelian group, with 0 being the identity, and (−a)/b
being the inverse of a/b. 2



182 Abelian groups

Example 8.7. The set of non-zero rational numbers Q∗ under multiplica-
tion forms an abelian group, with 1 being the identity, and b/a being the
inverse of a/b. 2

Example 8.8. The set Zn under addition forms an abelian group, where
[0]n is the identity, and where [−a]n is the inverse of [a]n. 2

Example 8.9. The set Z∗n of residue classes [a]n with gcd(a, n) = 1 under
multiplication forms an abelian group, where [1]n is the identity, and if b is
a multiplicative inverse of a modulo n, then [b]n is the inverse of [a]n. 2

Example 8.10. Continuing the previous example, let us set n = 15, and
enumerate the elements of Z∗15. They are

[1], [2], [4], [7], [8], [11], [13], [14].

An alternative enumeration is

[±1], [±2], [±4], [±7]. 2

Example 8.11. As another special case, consider Z∗5. We can enumerate
the elements of this groups as

[1], [2], [3], [4]

or alternatively as

[±1], [±2]. 2

Example 8.12. For any positive integer n, the set of n-bit strings under
the “exclusive or” operation forms an abelian group, where the “all zero”
bit string is the identity, and every bit string is its own inverse. 2

Example 8.13. The set of all arithmetic functions f , such that f(1) 6= 0,
with multiplication defined by the Dirichlet product (see §2.6) forms an
abelian group, where the special arithmetic function I is the identity, and
inverses are provided by the result of Exercise 2.27. 2

Example 8.14. The set of all finite bit strings under concatenation does
not form an abelian group. Although concatenation is associative and the
empty string acts as an identity element, inverses do not exist (except for
the empty string), nor is concatenation commutative. 2

Example 8.15. The set of 2 × 2 integer matrices with determinant ±1,
together with the binary operation of matrix multiplication, is an example of
a non-abelian group; that is, it satisfies properties (i)–(iii) of Definition 8.1,
but not property (iv). 2
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Example 8.16. The set of all permutations on a given set of size n ≥
3, together with the binary operation of function composition, is another
example of a non-abelian group (for n = 1, 2, it is an abelian group). 2

Note that in specifying a group, one must specify both the underlying set
G as well as the binary operation; however, in practice, the binary operation
is often implicit from context, and by abuse of notation, one often refers to
G itself as the group. For example, when talking about the abelian groups
Z and Zn, it is understood that the group operation is addition, while when
talking about the abelian group Z∗n, it is understood that the group operation
is multiplication.

Typically, instead of using a special symbol like “?” for the group oper-
ation, one uses the usual addition (“+”) or multiplication (“·”) operations.
For any particular, concrete abelian group, the most natural choice of no-
tation is clear (e.g., addition for Z and Zn, multiplication for Z∗n); however,
for a “generic” group, the choice is largely a matter of taste. By conven-
tion, whenever we consider a “generic” abelian group, we shall use additive
notation for the group operation, unless otherwise specified.

If an abelian group G is written additively, then the identity element is
denoted by 0G (or just 0 if G is clear from context), and the inverse of an
element a ∈ G is denoted by −a. For a, b ∈ G, a − b denotes a + (−b). If
n is a positive integer, then n · a denotes a+ a+ · · ·+ a, where there are n
terms in the sum—note that 1 · a = a. Moreover, 0 · a denotes 0G, and if n
is a negative integer, then n · a denotes (−n)(−a).

If an abelian group G is written multiplicatively, then the identity element
is denoted by 1G (or just 1 if G is clear from context), and the inverse of
an element a ∈ G is denoted by a−1 or 1/a. As usual, one may write ab in
place of a · b. For a, b ∈ G, a/b denotes a · b−1. If n is a positive integer,
then an denotes a · a · · · · · a, where there are n terms in the product—note
that a1 = a. Moreover, a0 denotes 1G, and if n is a negative integer, then
an denotes (a−1)−n.

An abelian group G may be infinite or finite. If the group is finite, we
define its order to be the number of elements in the underlying set G;
otherwise, we say that the group has infinite order.

Example 8.17. The order of the additive group Zn is n. 2

Example 8.18. The order of the multiplicative group Z∗n is φ(n), where φ
is Euler’s phi function, defined in §2.4. 2

Example 8.19. The additive group Z has infinite order. 2
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We now record a few more simple but useful properties of abelian groups.

Theorem 8.3. Let G be an abelian group. Then for all a, b, c ∈ G and
n,m ∈ Z, we have:

(i) if a+ b = a+ c, then b = c;
(ii) the equation a+ x = b has a unique solution x ∈ G;
(iii) −(a+ b) = (−a) + (−b);
(iv) −(−a) = a;
(v) (−n)a = −(na) = n(−a);
(vi) (n+m)a = na+ma;
(vii) n(ma) = (nm)a = m(na);
(viii) n(a+ b) = na+ nb.

Proof. Exercise. 2

If G1, . . . , Gk are abelian groups, we can form the direct product
G := G1 × · · · × Gk, which consists of all k-tuples (a1, . . . , ak) with
a1 ∈ G1, . . . , ak ∈ Gk. We can view G in a natural way as an abelian
group if we define the group operation component-wise:

(a1, . . . , ak) + (b1, . . . , bk) := (a1 + b1, . . . , ak + bk).

Of course, the groups G1, . . . , Gk may be different, and the group operation
applied in the ith component corresponds to the group operation associated
with Gi. We leave it to the reader to verify that G is in fact an abelian
group.

Exercise 8.1. In this exercise, you are to generalize the Möbius inversion
formula, discussed in §2.6, to arbitrary abelian groups. Let F be the set
of all functions mapping positive integers to integers. Let G be an abelian
group, and let G be the set of all functions mapping positive integers to
elements of G. For f ∈ F and g ∈ G, we can define the Dirichlet product
f ? g ∈ G as follows:

(f ? g)(n) :=
∑
d|n

f(d)g(n/d),

the sum being over all positive divisors d of n. Let I, J, µ ∈ F be as defined
in §2.6.

(a) Show that for all f, g ∈ F and all h ∈ G, we have (f ?g)?h = f ?(g?h).
(b) Show that for all f ∈ G, we have I ? f = f .
(c) Show that for all f, F ∈ G, we have F = J ?f if and only if f = µ?F .
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8.2 Subgroups

We next introduce the notion of a subgroup.

Definition 8.4. Let G be an abelian group, and let H be a non-empty subset
of G such that

(i) a+ b ∈ H for all a, b ∈ H, and

(ii) −a ∈ H for all a ∈ H.

Then H is called a subgroup of G.

In words: H is a subgroup of G if it is closed under the group operation
and taking inverses.

Multiplicative notation: if the abelian group G in the above definition is
written using multiplicative notation, then H is a subgroup if ab ∈ H and
a−1 ∈ H for all a, b ∈ H.

Theorem 8.5. If G is an abelian group, and H is a subgroup of G, then
H contains 0G; moreover, the binary operation of G, when restricted to H,
yields a binary operation that makes H into an abelian group whose identity
is 0G.

Proof. First, to see that 0G ∈ H, just pick any a ∈ H, and using both
properties of the definition of a subgroup, we see that 0G = a+ (−a) ∈ H.

Next, note that by property (i) of Definition 8.4, H is closed under ad-
dition, which means that the restriction of the binary operation “+” on G

to H induces a well defined binary operation on H. So now it suffices to
show that H, together with this operation, satisfy the defining properties
of an abelian group. Associativity and commutativity follow directly from
the corresponding properties for G. Since 0G acts as the identity on G, it
does so on H as well. Finally, property (ii) of Definition 8.4 guarantees that
every element a ∈ H has an inverse in H, namely, −a. 2

Clearly, for an abelian group G, the subsets G and {0G} are subgroups.
These are not very interesting subgroups. An easy way to sometimes find
other, more interesting, subgroups within an abelian group is by using the
following two theorems.

Theorem 8.6. Let G be an abelian group, and let m be an integer. Then
mG := {ma : a ∈ G} is a subgroup of G.

Proof. For ma,mb ∈ mG, we have ma+mb = m(a+b) ∈ mG, and −(ma) =
m(−a) ∈ mG. 2
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Theorem 8.7. Let G be an abelian group, and let m be an integer. Then
G{m} := {a ∈ G : ma = 0G} is a subgroup of G.

Proof. If ma = 0G and mb = 0G, then m(a+ b) = ma+mb = 0G + 0G = 0G

and m(−a) = −(ma) = −0G = 0G. 2

Multiplicative notation: if the abelian group G in the above two theorems
is written using multiplicative notation, then we write the subgroup of the
first theorem as Gm := {am : a ∈ G}. The subgroup in the second theorem
is denoted in the same way: G{m} := {a ∈ G : am = 1G}.

Example 8.20. For every integer m, the set mZ is the subgroup of the
additive group Z consisting of all integer multiples ofm. Two such subgroups
mZ and m′Z are equal if and only if m = ±m′. The subgroup Z{m} is equal
to Z if m = 0, and is equal to {0} otherwise. 2

Example 8.21. Let n be a positive integer, let m ∈ Z, and consider the
subgroup mZn of the additive group Zn. Now, [b]n ∈ mZn if and only if
there exists x ∈ Z such that mx ≡ b (mod n). By Theorem 2.7, such an
x exists if and only if d | b, where d := gcd(m,n). Thus, mZn consists
precisely of the n/d distinct residue classes

[i · d]n (i = 0, . . . , n/d− 1),

and in particular, mZn = dZn.
Now consider the subgroup Zn{m} of Zn. The residue class [x]n is in

Zn{m} if and only if mx ≡ 0 (mod n). By Theorem 2.7, this happens if
and only if x ≡ 0 (mod n/d), where d = gcd(m,n) as above. Thus, Zn{m}
consists precisely of the d residue classes

[i · n/d]n (i = 0, . . . , d− 1),

and in particular, Zn{m} = Zn{d} = (n/d)Zn. 2

Example 8.22. For n = 15, consider again the table in Example 2.3. For
m = 1, 2, 3, 4, 5, 6, the elements appearing in the mth row of that table
form the subgroup mZn of Zn, and also the subgroup Zn{n/d}, where d :=
gcd(m,n). 2

Because the abelian groups Z and Zn are of such importance, it is a good
idea to completely characterize all subgroups of these abelian groups. As
the following two theorems show, the subgroups in the above examples are
the only subgroups of these groups.
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Theorem 8.8. If G is a subgroup of Z, then there exists a unique non-
negative integer m such that G = mZ. Moreover, for two non-negative
integers m1 and m2, we have m1Z ⊆ m2Z if and only if m2 | m1.

Proof. Actually, we have already proven this. One only needs to observe
that a subset G of Z is a subgroup if and only if it is an ideal of Z, as
defined in §1.2 (see Exercise 1.7). The first statement of the theorem then
follows from Theorem 1.5. The second statement follows easily from the
definitions, as was observed in §1.2. 2

Theorem 8.9. If G is a subgroup of Zn, then there exists a unique positive
integer d dividing n such that G = dZn. Also, for positive divisors d1, d2 of
n, we have d1Zn ⊆ d2Zn if and only if d2 | d1.

Proof. Let ρ : Z→ Zn be the map that sends a ∈ Z to [a]n ∈ Zn. Clearly, ρ
is surjective. Consider the pre-image ρ−1(G) ⊆ Z of G.

We claim that ρ−1(G) is a subgroup of Z. To see this, observe that for
a, b ∈ Z, if [a]n and [b]n belong to G, then so do [a + b]n = [a]n + [b]n and
−[a]n = [−a]n, and thus a+ b and −a belong to the pre-image.

Since ρ−1(G) is a subgroup of Z, by the previous theorem, we have
ρ−1(G) = dZ for some non-negative integer d. Moreover, it is clear that
n ∈ ρ−1(G), and hence d | n. That proves the existence part of the theorem.

Next, we claim that for any divisor d of n, we have ρ−1(dZn) = dZ. To see
this, note that ρ−1(dZn) consists of all integers b such that dx ≡ b (mod n)
has an integer solution x, and by Theorem 2.7, this congruence admits a
solution if and only if d | b. That proves the claim.

Now consider any two positive divisors d1, d2 of n. Since d1Zn ⊆ d2Zn

if and only if ρ−1(d1Zn) ⊆ ρ−1(d2Zn), the remaining statements of the
theorem follow from the corresponding statements of Theorem 8.8 and the
above claim. 2

Of course, not all abelian groups have such a simple subgroup structure.

Example 8.23. Consider the group G = Z2×Z2. For any non-zero α ∈ G,
α + α = 0G. From this, it is easy to see that the set H = {0G, α} is a
subgroup of G. However, for any integer m, mG = G if m is odd, and
mG = {0G} if m is even. Thus, the subgroup H is not of the form mG for
any m. 2

Example 8.24. Consider again the group Z∗n, for n = 15, discussed in
Example 8.10. As discussed there, we have Z∗15 = {[±1], [±2], [±4], [±7]}.
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Therefore, the elements of (Z∗15)2 are

[1]2 = [1], [2]2 = [4], [4]2 = [16] = [1], [7]2 = [49] = [4];

thus, (Z∗15)2 has order 2, consisting as it does of the two distinct elements
[1] and [4].

Going further, one sees that (Z∗15)4 = {[1]}. Thus, α4 = [1] for all α ∈ Z∗15.
By direct calculation, one can determine that (Z∗15)3 = Z∗15; that is, cubing

simply permutes Z∗15.
For any integer m, write m = 4q + r, where 0 ≤ r < 4. Then for any

α ∈ Z∗15, we have αm = α4q+r = α4qαr = αr. Thus, (Z∗15)m is either Z∗15,
(Z∗15)2, or {[1]}.

However, there are certainly other subgroups of Z∗15 — for example, the
subgroup {[±1]}. 2

Example 8.25. Consider again the group Z∗5 from Example 8.11. As dis-
cussed there, Z∗5 = {[±1], [±2]}. Therefore, the elements of (Z∗5)2 are

[1]2 = [1], [2]2 = [4] = [−1];

thus, (Z∗5)2 = {[±1]} and has order 2.
There are in fact no other subgroups of Z∗5 besides Z∗5, {[±1]}, and {[1]}.

Indeed, if H is a subgroup containing [2], then we must have H = Z∗5:
[2] ∈ H implies [2]2 = [4] = [−1] ∈ H, which implies [−2] ∈ H as well. The
same holds if H is a subgroup containing [−2]. 2

Example 8.26. Consider again the group of arithmetic functions f , such
that f(1) 6= 0, with multiplication defined by the Dirichlet product, dis-
cussed in Example 8.13. By the results of Exercises 2.21 and 2.28, we see
that the subset of all multiplicative arithmetic functions is a subgroup of
this group. 2

The following two theorems may be used to simplify verifying that a subset
is a subgroup.

Theorem 8.10. If G is an abelian group, and H is a non-empty subset of
G such that a− b ∈ H for all a, b ∈ H, then H is a subgroup of G.

Proof. Since H is non-empty, let c be an arbitrary element of H. Then
0G = c − c ∈ H. It follows that for all a ∈ H, we have −a = 0G − a ∈ H,
and for all a, b ∈ H, we have a+ b = a− (−b) ∈ H. 2

Theorem 8.11. If G is an abelian group, and H is a non-empty, finite
subset of G such that a+ b ∈ H for all a, b ∈ H, then H is a subgroup of G.
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Proof. We only need to show that −a ∈ H for all a ∈ H. Let a ∈ H be
given. If a = 0G, then clearly −a = 0G ∈ H, so assume that a 6= 0G, and
consider the set S of all elements of G of the form ma, for m = 1, 2, . . . . Since
H is closed under addition, it follows that S ⊆ H. Moreover, since H is
finite, S must be finite, and hence there must exist integers m1,m2 such that
m1 > m2 > 0 andm1a = m2a; that is, ra = 0G, where r := m1−m2 > 0. We
may further assume that r > 1, since otherwise a = 0G, and we are assuming
that a 6= 0G. It follows that a+ (r− 1)a = 0G, and so −a = (r− 1)a ∈ S. 2

We close this section with two theorems that provide useful ways to build
new subgroups out of old subgroups.

Theorem 8.12. If H1 and H2 are subgroups of an abelian group G, then
so is

H1 +H2 := {h1 + h2 : h1 ∈ H1, h2 ∈ H2}.

Proof. Consider two elements in H1 +H2, which we can write as h1 +h2 and
h′1 + h′2, where h1, h

′
1 ∈ H1 and h2, h

′
2 ∈ H2. Then by the closure properties

of subgroups, h1+h′1 ∈ H1 and h2+h′2 ∈ H2, and hence (h1+h2)+(h′1+h′2) =
(h1 + h′1) + (h2 + h′2) ∈ H1 +H2. Similarly, −(h1 + h2) = (−h1) + (−h2) ∈
H1 +H2. 2

Multiplicative notation: if the abelian group G in the above theorem is
written multiplicatively, then the subgroup defined in the theorem is written
H1 ·H2 := {h1h2 : h1 ∈ H1, h2 ∈ H2}.

Theorem 8.13. If H1 and H2 are subgroups of an abelian group G, then
so is H1 ∩H2.

Proof. If h ∈ H1 ∩ H2 and h′ ∈ H1 ∩ H2, then since h, h′ ∈ H1, we have
h+ h′ ∈ H1, and since h, h′ ∈ H2, we have h+ h′ ∈ H2; therefore, h+ h′ ∈
H1 ∩H2. Similarly, −h ∈ H2 and −h ∈ H2, and therefore, −h ∈ H1 ∩H2.
2

Exercise 8.2. Show that if H ′ is a subgroup of an abelian group G, then a
set H ⊆ H ′ is a subgroup of G if and only if H is a subgroup of H ′.

Exercise 8.3. Let G be an abelian group with subgroups H1 and H2. Show
that any subgroup H of G that contains H1 ∪ H2 contains H1 + H2, and
H1 ⊆ H2 if and only if H1 +H2 = H2.

Exercise 8.4. Let H1 be a subgroup of an abelian group G1 and H2 a
subgroup of an abelian group G2. Show that H1 × H2 is a subgroup of
G1 ×G2.
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Exercise 8.5. Let G1 and G2 be abelian groups, and let H be a subgroup
of G1 ×G2. Define

H1 := {h1 ∈ G1 : (h1, h2) ∈ H for some h2 ∈ G2}.

Show that H1 is a subgroup of G1.

Exercise 8.6. Give an example of specific abelian groups G1 and G2, along
with a subgroup H of G1 ×G2, such that H cannot be written as H1 ×H2,
where H1 is a subgroup of G1 and H2 is a subgroup of G2.

8.3 Cosets and quotient groups

We now generalize the notion of a congruence relation.
Let G be an abelian group, and let H be a subgroup of G. For a, b ∈ G,

we write a ≡ b (mod H) if a− b ∈ H. In other words, a ≡ b (mod H) if and
only if a = b+ h for some h ∈ H.

Analogously to Theorem 2.2, if we view the subgroup H as fixed, then
the following theorem says that the binary relation “· ≡ · (mod H)” is an
equivalence relation on the set G:

Theorem 8.14. Let G be an abelian group and H a subgroup of G. For all
a, b, c ∈ G, we have:

(i) a ≡ a (mod H);

(ii) a ≡ b (mod H) implies b ≡ a (mod H);

(iii) a ≡ b (mod H) and b ≡ c (mod H) implies a ≡ c (mod H).

Proof. For (i), observe that H contains 0G = a− a. For (ii), observe that if
H contains a − b, then it also contains −(a − b) = b − a. For (iii), observe
that if H contains a−b and b−c, then it also contains (a−b)+(b−c) = a−c.
2

Since the binary relation “· ≡ · (mod H)” is an equivalence relation, it
partitions G into equivalence classes. It is easy to see (verify) that for any
a ∈ G, the equivalence class containing a is precisely the set a+H := {a+h :
h ∈ H}, and this set is called the coset of H in G containing a, and an
element of such a coset is called a representative of the coset.

Multiplicative notation: if G is written multiplicatively, then a ≡
b (mod H) means a/b ∈ H, and the coset of H in G containing a is
aH := {ah : h ∈ H}.

Example 8.27. Let G := Z and H := nZ for some positive integer n. Then



8.3 Cosets and quotient groups 191

a ≡ b (mod H) if and only if a ≡ b (mod n). The coset a+H is exactly the
same thing as the residue class [a]n. 2

Example 8.28. Let G := Z4 and let H be the subgroup 2G = {[0], [2]} of
G. The coset of H containing [1] is {[1], [3]}. These are all the cosets of H
in G. 2

Theorem 8.15. Any two cosets of a subgroup H in an abelian group G

have equal cardinality; that is, there is a bijective map from one coset to the
other.

Proof. It suffices to exhibit a bijection between H and a+H for any a ∈ G.
The map fa : H → a+H that sends h ∈ H to a+h is easily seen to be just
such a bijection. 2

An incredibly useful consequence of the above theorem is:

Theorem 8.16 (Lagrange’s theorem). If G is a finite abelian group, and
H is a subgroup of G, then the order of H divides the order of G.

Proof. This is an immediate consequence of the previous theorem, and the
fact that the cosets of H in G partition G. 2

Analogous to Theorem 2.3, we have:

Theorem 8.17. Let G be an abelian group and H a subgroup. For
a, a′, b, b′ ∈ G, if a ≡ a′ (mod H) and b ≡ b′ (mod H), then a + b ≡
a′ + b′ (mod H).

Proof. Now, a ≡ a′ (mod H) and b ≡ b′ (mod H) means that a′ = a+h1 and
b′ = b+h2 for h1, h2 ∈ H. Therefore, a′+ b′ = (a+h1)+(b+h2) = (a+ b)+
(h1 + h2), and since h1 + h2 ∈ H, this means that a+ b ≡ a′ + b′ (mod H).
2

Let G be an abelian group and H a subgroup. Theorem 8.17 allows us
to define a binary operation on the collection of cosets of H in G in the
following natural way: for a, b ∈ G, define

(a+H) + (b+H) := (a+ b) +H.

The fact that this definition is unambiguous follows immediately from The-
orem 8.17. Also, one can easily verify that this operation defines an abelian
group, where H acts as the identity element, and the inverse of a coset a+H
is (−a) +H. The resulting group is called the quotient group of G mod-
ulo H, and is denoted G/H. The order of the group G/H is sometimes
denoted [G : H] and is called the index of H in G.
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Multiplicative notation: if G is written multiplicatively, then the definition
of the group operation of G/H is expressed

(aH) · (bH) := (ab)H.

Theorem 8.18. Let G be a finite abelian group and H a subgroup. Then
[G : H] = |G|/|H|. Moreover, if H ′ is another subgroup of G with H ⊆ H ′,
then

[G : H] = [G : H ′][H ′ : G].

Proof. The fact that [G : H] = |G|/|H| follows directly from Theorem 8.15.
The fact that [G : H] = [G : H ′][H ′ : G] follows from a simple calculation:

[G : H ′] =
|G|
|H ′|

=
|G|/|H|
|H ′|/|H|

=
[G : H]
[H ′ : H]

. 2

Example 8.29. For the additive group of integers Z and the subgroup nZ
for n > 0, the quotient group Z/nZ is precisely the same as the additive
group Zn that we have already defined. For n = 0, Z/nZ is essentially just
a “renaming” of Z. 2

Example 8.30. Let G := Z6 and H = 3G be the subgroup of G consisting
of the two elements {[0], [3]}. The cosets of H in G are α := H = {[0], [3]},
β := [1] + H = {[1], [4]}, and γ := [2] + H = {[2], [5]}. If we write out an
addition table for G, grouping together elements in cosets of H in G, then
we also get an addition table for the quotient group G/H:

+ [0] [3] [1] [4] [2] [5]
[0] [0] [3] [1] [4] [2] [5]
[3] [3] [0] [4] [1] [5] [2]
[1] [1] [4] [2] [5] [3] [0]
[4] [4] [1] [5] [2] [0] [3]
[2] [2] [5] [3] [0] [4] [1]
[5] [5] [2] [0] [3] [1] [4]

This table illustrates quite graphically the point of Theorem 8.17: for any
two cosets, if we take any element from the first and add it to any element
of the second, we always end up in the same coset.

We can also write down just the addition table for G/H:

+ α β γ

α α β γ

β β γ α

γ γ α β
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Note that by replacing α with [0]3, β with [1]3, and γ with [2]3, the
addition table for G/H becomes the addition table for Z3. In this sense, we
can view G/H as essentially just a “renaming” of Z3. 2

Example 8.31. Let us return to Example 8.24. The group Z∗15, as we
saw, is of order 8. The subgroup (Z∗15)2 of Z∗15 has order 2. Therefore, the
quotient group Z∗15/(Z∗15)2 has order 4. Indeed, the cosets are α00 = {[1], [4]},
α01 = {[−1], [−4]}, α10 = {[2], [−7]}, and α11 = {[7], [−2]}. In the quotient
group, α00 is the identity; moreover, we have

α2
01 = α2

10 = α2
11 = α00

and

α01α10 = α11, α10α11 = α01, α01α11 = α10.

This completely describes the behavior of the group operation of the quotient
group. Note that this group is essentially just a “renaming” of the group
Z2 × Z2. 2

Example 8.32. As we saw in Example 8.25, (Z∗5)2 = {[±1]}. Therefore,
the quotient group Z∗5/(Z∗5)2 has order 2. The cosets of (Z∗5)2 in Z∗5 are
α0 = {[±1]} and α1 = {[±2]}. In the group Z∗5/(Z∗5)2, α0 is the identity,
and α1 is its own inverse, and we see that this group is essentially just a
“renaming” of Z2. 2

Exercise 8.7. Let H be a subgroup of an abelian group G, and let a and
a′ be elements of G, with a ≡ a′ (mod H).

(a) Show that −a ≡ −a′ (mod H).

(b) Show that na ≡ na′ (mod H) for all n ∈ Z.

Exercise 8.8. Let G be an abelian group, and let ∼ be an equivalence
relation on G. Further, suppose that for all a, a′, b ∈ G, if a ∼ a′, then
a + b ∼ a′ + b. Let H := {a ∈ G : a ∼ 0G}. Show that H is a subgroup of
G, and that for all a, b ∈ G, we have a ∼ b if and only if a ≡ b (mod H).

Exercise 8.9. Let H be a subgroup of an abelian group G.

(a) Show that if H ′ is a subgroup of G containing H, then H ′/H is a
subgroup of G/H.

(b) Show that if K is a subgroup of G/H, then the set H ′ := {a ∈ G :
a+H ∈ K} is a subgroup of G containing H.
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8.4 Group homomorphisms and isomorphisms

Definition 8.19. A group homomorphism is a function ρ from an
abelian group G to an abelian group G′ such that ρ(a + b) = ρ(a) + ρ(b)
for all a, b ∈ G.

Note that in the equality ρ(a + b) = ρ(a) + ρ(b) in the above definition,
the addition on the left-hand side is taking place in the group G while the
addition on the right-hand side is taking place in the group G′.

Two sets play a critical role in understanding a group homomorphism
ρ : G → G′. The first set is the image of ρ, that is, the set ρ(G) = {ρ(a) :
a ∈ G}. The second set is the kernel of ρ, defined as the set of all elements
of G that are mapped to 0G′ by ρ, that is, the set ρ−1({0G′}) = {a ∈ G :
ρ(a) = 0G′}. We introduce the following notation for these sets: img(ρ)
denotes the image of ρ, and ker(ρ) denotes the kernel of ρ.

Example 8.33. For any abelian group G and any integer m, the map that
sends a ∈ G to ma ∈ G is clearly a group homomorphism from G into
G, since for a, b ∈ G, we have m(a + b) = ma + mb. The image of this
homomorphism is mG and the kernel is G{m}. We call this map the m-
multiplication map on G. If G is written multiplicatively, we call this
the m-power map on G, and its image is Gm. 2

Example 8.34. Consider the m-multiplication map on Zn. As we saw in
Example 8.21, if d := gcd(n,m), the image mZn of this map is a subgroup
of Zn of order n/d, while its kernel Zn{m} is a subgroup of order d. 2

Example 8.35. Let G be an abelian group and let a be a fixed element of
G. Let ρ : Z→ G be the map that sends z ∈ Z to za ∈ G. It is easy to see
that this is group homomorphism, since

ρ(z + z′) = (z + z′)a = za+ z′a = ρ(z) + ρ(z′). 2

Example 8.36. As a special case of the previous example, let n be a positive
integer and let α be an element of Z∗n. Let ρ : Z → Z∗n be the group
homomorphism that sends z ∈ Z to αz ∈ Z∗n. If the multiplicative order of
α is equal to k, then as discussed in §2.5, the image of ρ consists of the k
distinct group elements α0, α1, . . . , αk−1. The kernel of ρ consists of those
integers a such that αa = [1]n. Again by the discussion in §2.5, the kernel
of ρ is equal to kZ. 2

Example 8.37. We may generalize Example 8.35 as follows. Let G be an
abelian group, and let a1, . . . , ak be fixed elements of G. Let ρ : Z×k → G
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be the map that sends (z1, . . . , zk) ∈ Z×k to z1a1 + · · · + zkak ∈ G. The
reader may easily verify that ρ is a group homomorphism. 2

Example 8.38. As a special case of the previous example, let p1, . . . , pk

be distinct primes, and let ρ : Z×k → Q∗ be the group homomorphism that
sends (z1, . . . , zk) ∈ Z×k to pz1

1 · · · p
zk
k ∈ Q∗. The image of ρ is the set of all

non-zero fractions whose numerator and denominator are divisible only by
the primes p1, . . . , pk. The kernel of ρ contains only the all-zero tuple 0×k.
2

The following theorem summarizes some of the most important properties
of group homomorphisms.

Theorem 8.20. Let ρ be a group homomorphism from G to G′.

(i) ρ(0G) = 0G′.

(ii) ρ(−a) = −ρ(a) for all a ∈ G.

(iii) ρ(na) = nρ(a) for all n ∈ Z and a ∈ G.

(iv) For any subgroup H of G, ρ(H) is a subgroup of G′.

(v) ker(ρ) is a subgroup of G.

(vi) For all a, b ∈ G, ρ(a) = ρ(b) if and only if a ≡ b (mod ker(ρ)).

(vii) ρ is injective if and only if ker(ρ) = {0G}.
(viii) For any subgroup H ′ of G′, ρ−1(H ′) is a subgroup of G containing

ker(ρ).

Proof.

(i) We have

0G′ + ρ(0G) = ρ(0G) = ρ(0G + 0G) = ρ(0G) + ρ(0G).

Now cancel ρ(0G) from both sides (using part (i) of Theorem 8.3).

(ii) We have

0G′ = ρ(0G) = ρ(a+ (−a)) = ρ(a) + ρ(−a),

and hence ρ(−a) is the inverse of ρ(a).

(iii) For n = 0, this follows from part (i). For n > 0, this follows from
the definitions by induction on n. For n < 0, this follows from the
positive case and part (v) of Theorem 8.3.

(iv) For any a, b ∈ H, we have a + b ∈ H and −a ∈ H; hence, ρ(H)
contains ρ(a+ b) = ρ(a) + ρ(b) and ρ(−a) = −ρ(a).
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(v) If ρ(a) = 0G′ and ρ(b) = 0G′ , then ρ(a+b) = ρ(a)+ρ(b) = 0G′+0G′ =
0G′ , and ρ(−a) = −ρ(a) = −0G′ = 0G′ .

(vi) ρ(a) = ρ(b) iff ρ(a)− ρ(b) = 0G′ iff ρ(a− b) = 0G′ iff a− b ∈ ker(ρ) iff
a ≡ b (mod ker(ρ)).

(vii) If ρ is injective, then in particular, ρ−1({0G′}) cannot contain any
other element besides 0G. If ρ is not injective, then there exist two
distinct elements a, b ∈ G with ρ(a) = ρ(b), and by part (vi), ker(ρ)
contains the element a− b, which is non-zero.

(viii) This is very similar to part (v). If ρ(a) ∈ H ′ and ρ(b) ∈ H ′, then
ρ(a + b) = ρ(a) + ρ(b) ∈ H ′, and ρ(−a) = −ρ(a) ∈ H ′. Moreover,
since H ′ contains 0G′ , we must have ρ−1(H ′) ⊇ ρ−1({0G′}) = ker(ρ).

2

Part (vii) of the above theorem is particular useful: to check that a group
homomorphism is injective, it suffices to determine if ker(ρ) = {0G}. Thus,
the injectivity and surjectivity of a given group homomorphism ρ : G→ G′

may be characterized in terms of its kernel and image:

• ρ is injective if and only if ker(ρ) = {0G};
• ρ is surjective if and only if img(ρ) = G′.

The next three theorems establish some further convenient facts about
group homomorphisms.

Theorem 8.21. If ρ : G→ G′ and ρ′ : G′ → G′′ are group homomorphisms,
then so is their composition ρ′ ◦ ρ : G→ G′′.

Proof. For a, b ∈ G, we have ρ′(ρ(a + b)) = ρ′(ρ(a) + ρ(b)) = ρ′(ρ(a)) +
ρ′(ρ(b)). 2

Theorem 8.22. Let ρi : G → Gi, for i = 1, . . . , n, be group homo-
morphisms. Then the map ρ : G → G1 × · · · × Gn that sends a ∈ G

to (ρ1(a), . . . , ρn(a)) is a group homomorphism with kernel ker(ρ1) ∩ · · · ∩
ker(ρn).

Proof. Exercise. 2

Theorem 8.23. Let ρi : Gi → G, for i = 1, . . . , n, be group homomor-
phisms. Then the map ρ : G1 × · · · × Gn → G that sends (a1, . . . , an) to
ρ1(a1) + · · ·+ ρn(an) is a group homomorphism.

Proof. Exercise. 2

Consider a group homomorphism ρ : G → G′. If ρ is bijective, then ρ is
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called a group isomorphism of G with G′. If such a group isomorphism
ρ exists, we say that G is isomorphic to G′, and write G ∼= G′. Moreover,
if G = G′, then ρ is called a group automorphism on G.

Theorem 8.24. If ρ is a group isomorphism of G with G′, then the inverse
function ρ−1 is a group isomorphism of G′ with G.

Proof. For a′, b′ ∈ G′, we have

ρ(ρ−1(a′) + ρ−1(b′)) = ρ(ρ−1(a′)) + ρ(ρ−1(b′)) = a′ + b′,

and hence ρ−1(a′) + ρ−1(b′) = ρ−1(a′ + b′). 2

Because of this theorem, if G is isomorphic to G′, we may simply say that
“G and G′ are isomorphic.”

We stress that a group isomorphism of G with G′ is essentially just a
“renaming” of the group elements — all structural properties of the group
are preserved, even though the two groups might look quite different super-
ficially.

Example 8.39. As was shown in Example 8.30, the quotient group G/H

discussed in that example is isomorphic to Z3. As was shown in Exam-
ple 8.31, the quotient group Z∗15/(Z∗15)2 is isomorphic to Z2 × Z2. As was
shown in Example 8.32, the quotient group Z∗5/(Z∗5)2 is isomorphic to Z2. 2

Example 8.40. If gcd(n,m) = 1, then the m-multiplication map on Zn is
a group automorphism. 2

The following four theorems provide important constructions of group
homomorphisms.

Theorem 8.25. If H is a subgroup of an abelian group G, then the map
ρ : G → G/H given by ρ(a) = a + H is a surjective group homomorphism
whose kernel is H.

Proof. This really just follows from the definition of the quotient group. To
verify that ρ is a group homomorphism, note that

ρ(a+ b) = (a+ b) +H = (a+H) + (b+H) = ρ(a) + ρ(b).

Surjectivity follows from the fact that every coset is of the form a + H for
some a ∈ G. The fact that ker(ρ) = H follows from the fact that a + H is
the coset of H in G containing a, and so this is equal to H if and only if
a ∈ H. 2

The homomorphism of the above theorem is called the natural map from
G to G/H.
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Theorem 8.26. Let ρ be a group homomorphism from G into G′. Then
the map ρ̄ : G/ ker(ρ) → img(ρ) that sends the coset a + ker(ρ) for a ∈ G
to ρ(a) is unambiguously defined and is a group isomorphism of G/ ker(ρ)
with img(ρ).

Proof. Let K := ker(ρ). To see that the definition ρ̄ is unambiguous, note
that if a ≡ a′ (mod K), then by part (vi) of Theorem 8.20, ρ(a) = ρ(a′). To
see that ρ̄ is a group homomorphism, note that

ρ̄((a+K) + (b+K)) = ρ̄((a+ b) +K) = ρ(a+ b) = ρ(a) + ρ(b)

= ρ̄(a+K) + ρ̄(b+K).

It is clear that ρ̄ maps onto img(ρ), since any element of img(ρ) is of the form
ρ(a) for some a ∈ G, and the map ρ̄ sends a+K to ρ(a). Finally, to see that
ρ̄ is injective, suppose that ρ̄(a + K) = 0G′ ; then we have ρ(a) = 0G′ , and
hence a ∈ K; from this, it follows that a+K is equal to K, which is the zero
element of G/K. Injectivity then follows from part (vii) of Theorem 8.20,
applied to ρ̄. 2

The following theorem is an easy generalization of the previous one.

Theorem 8.27. Let ρ be a group homomorphism from G into G′. Then for
any subgroup H contained in ker(ρ), the map ρ̄ : G/H → img(ρ) that sends
the coset a + H for a ∈ G to ρ(a) is unambiguously defined and is a group
homomorphism from G/H onto img(ρ) with kernel ker(ρ)/H.

Proof. Exercise—just mimic the proof of the previous theorem. 2

Theorem 8.28. Let G be an abelian group with subgroups H1,H2. Then
the map ρ : H1×H2 → H1 +H2 that sends (h1, h2) to h1 +h2 is a surjective
group homomorphism. Moreover, if H1 ∩ H2 = {0G}, then ρ is a group
isomorphism of H1 ×H2 with H1 +H2.

Proof. The fact that ρ is a group homomorphism is just a special case
of Theorem 8.23, applied to the inclusion maps ρ1 : H1 → H1 + H2 and
ρ2 : H2 → H1 + H2. One can also simply verify this by direct calculation:
for h1, h

′
1 ∈ H1 and h2, h

′
2 ∈ H2, we have

ρ(h1 + h′1, h2 + h′2) = (h1 + h′1) + (h2 + h′2)

= (h1 + h2) + (h′1 + h′2)

= ρ(h1, h2) + ρ(h′1, ρ
′
2).

Moreover, from the definition of H1 +H2, we see that ρ is in fact surjective.
Now assume that H1 ∩H2 = {0G}. To see that ρ is injective, it suffices
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to show that ker(ρ) is trivial; that is, it suffices to show that for all h1 ∈ H1

and h2 ∈ H2, h1 + h2 = 0G implies h1 = 0G and h2 = 0G. But h1 + h2 = 0G

implies h1 = −h2 ∈ H2, and hence h1 ∈ H1 ∩H2 = {0G}, and so h1 = 0G.
Similarly, one shows that h2 = 0G, and that finishes the proof. 2

Example 8.41. For n ≥ 1, the natural map ρ from Z to Zn sends a ∈ Z to
the residue class [a]n. This map is a surjective group homomorphism with
kernel nZ. 2

Example 8.42. We may restate the Chinese remainder theorem (Theo-
rem 2.8) in more algebraic terms. Let n1, . . . , nk be pairwise relatively
prime, positive integers. Consider the map from the group Z to the group
Zn1 × · · · × Znk

that sends x ∈ Z to ([x]n1 , . . . , [x]nk
). It is easy to see that

this map is a group homomorphism (this follows from Example 8.41 and
Theorem 8.22). In our new language, the Chinese remainder theorem says
that this group homomorphism is surjective and that the kernel is nZ, where
n =

∏k
i=1 ni. Therefore, by Theorem 8.26, the map that sends [x]n ∈ Zn

to ([x]n1 , . . . , [x]nk
) is a group isomorphism of the group Zn with the group

Zn1 × · · · × Znk
. 2

Example 8.43. Let n1, n2 be positive integers with n1 > 1 and n1 | n2.
Then the map ρ̄ : Zn2 → Zn1 that sends [a]n2 to [a]n1 is a surjective group
homomorphism, and [a]n2 ∈ ker(ρ̄) if and only if n1 | a; that is, ker(ρ̄) =
n1Zn2 . The map ρ̄ can also be viewed as the map obtained by applying
Theorem 8.27 with the natural map ρ from Z to Zn1 and the subgroup n2Z
of Z, which is contained in ker(ρ) = n1Z. 2

Example 8.44. Let us reconsider Example 8.21. Let n be a positive in-
teger, let m ∈ Z, and consider the subgroup mZn of the additive group
Zn. Let ρ1 : Z → Zn be the natural map, and let ρ2 : Zn → Zn be the
m-multiplication map. The composed map ρ = ρ2 ◦ ρ1 from Z to Zn is also
a group homomorphism. The kernel of ρ consists of those integers a such
that am ≡ 0 (mod n), and so Theorem 2.7 implies that ker(ρ) = (n/d)Z,
where d := gcd(m,n). The image of ρ is mZn. Theorem 8.26 therefore
implies that the map ρ̄ : Zn/d → mZn that sends [a]n/d to [ma]n is a group
isomorphism. 2

Exercise 8.10. Verify that the “is isomorphic to” relation on abelian groups
is an equivalence relation; that is, for all abelian groups G1, G2, G3, we have:

(a) G1
∼= G1;

(b) G1
∼= G2 implies G2

∼= G1;
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(c) G1
∼= G2 and G2

∼= G3 implies G1
∼= G3.

Exercise 8.11. Let G1, G2 be abelian groups, and let ρ : G1 × G2 → G1

be the map that sends (a1, a2) ∈ G1 × G2 to a1 ∈ G1. Show that ρ is a
surjective group homomorphism whose kernel is {0G1} ×G2.

Exercise 8.12. Suppose that G, G1, and G2 are abelian groups, and that
ρ : G1 × G2 → G is a group isomorphism. Let H1 := ρ(G1 × {0G2}) and
H2 := ρ({0G1} ×G2). Show that

(a) H1 and H2 are subgroups of G,

(b) H1 +H2 = G, and

(c) H1 ∩H2 = {0G}.

Exercise 8.13. Let ρ be a group homomorphism from G into G′. Show
that for any subgroup H of G, we have ρ−1(ρ(H)) = H + ker(ρ).

Exercise 8.14. Let ρ be a group homomorphism from G into G′. Show
that the subgroups of G containing ker(ρ) are in one-to-one correspondence
with the subgroups of img(ρ), where the subgroup H of G containing ker(ρ)
corresponds to the subgroup ρ(H) of img(ρ).

Exercise 8.15. Let G be an abelian group with subgroups H ⊆ H ′.
(a) Show that we have a group isomorphism

G/H ′ ∼=
G/H

H ′/H
.

(b) Show that if [G : H] is finite (even though G itself may have infinite
order), then [G : H] = [G : H ′] · [H ′ : H].

Exercise 8.16. Show that if G = G1 × G2 for abelian groups G1 and G2,
and H1 is a subgroup of G1 and H2 is a subgroup of G2, then G/(H1×H2) ∼=
G1/H1 ×G2/H2.

Exercise 8.17. Let ρ1 and ρ2 be group homomorphisms from G into G′.
Show that the map ρ : G → G′ that sends a ∈ G to ρ1(a) + ρ2(a) ∈ G′ is
also a group homomorphism.

Exercise 8.18. Let G and G′ be abelian groups. Consider the set H of all
group homomorphisms ρ : G → G′. This set is non-empty, since the map
that sends everything in G to 0G′ is trivially an element of H. We may define
an addition operation on H as follows: for ρ1, ρ2 ∈ H, let ρ1 +ρ2 be the map
ρ : G→ G′ that sends a ∈ G to ρ1(a) + ρ2(a). By the previous exercise, ρ is
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also in H, and so this addition operation is a well-defined binary operation
on H. Show that H, together with this addition operation, forms an abelian
group.

Exercise 8.19. This exercise develops an alternative, “quick and dirty”
proof of the Chinese remainder theorem, based on group theory and a count-
ing argument. Let n1, . . . , nk be pairwise relatively prime, positive integers,
and let n := n1 · · ·nk. Consider the map ρ : Z→ Zn1 × · · · ×Znk

that sends
x ∈ Z to ([x]n1 , . . . , [x]nk

).

(a) Using the results of Example 8.41 and Theorem 8.22, show (directly)
that ρ is a group homomorphism with kernel nZ.

(b) Using Theorem 8.26, conclude that the map ρ̄ given by that theorem,
which sends [x]n to ([x]n1 , . . . , [x]nk

), is an injective group homomor-
phism from Zn into Zn1 × · · · × Znk

.

(c) Since |Zn| = n = |Zn1 × · · · × Znk
|, conclude that the map ρ̄ is

surjective, and so is an isomorphism between Zn and Zn1 ×· · ·×Znk
.

Although simple, this proof does not give us an explicit formula for comput-
ing ρ̄−1.

Exercise 8.20. Let p be an odd prime; consider the squaring map on Z∗p.

(a) Using Exercise 2.5, show that the kernel of the squaring map on Z∗p
consists of the two elements [±1]p.

(b) Using the results of this section, conclude that there are (p − 1)/2
squares in Z∗p, each of which has precisely two square roots in Z∗p.

Exercise 8.21. Consider the group homomorphism ρ : Z × Z × Z → Q∗
that sends (a, b, c) to 2a3b12c. Describe the image and kernel of ρ.

Exercise 8.22. This exercise develops some simple — but extremely use-
ful—connections between group theory and probability theory. Let ρ : G→
G′ be a group homomorphism, where G and G′ are finite abelian groups.

(a) Show that if g is a random variable with the uniform distribution on
G, then ρ(g) is a random variable with the uniform distribution on
img(ρ).

(b) Show that if g is a random variable with the uniform distribution
on G, and g′ is a fixed element in img(ρ), then the conditional dis-
tribution of g, given that ρ(g) = g′, is the uniform distribution on
ρ−1({g′}).

(c) Show that if g′1 is a fixed element of G′, g1 is uniformly distributed
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over ρ−1({g′1}), g′2 is a fixed element of G′, and g2 is a fixed element of
ρ−1({g′2}), then g1 + g2 is uniformly distributed over ρ−1({g′1 + g′2}).

(d) Show that if g′1 is a fixed element of G′, g1 is uniformly distributed
over ρ−1({g′1}), g′2 is a fixed element of G′, g2 is uniformly distributed
over ρ−1({g′2}), and g1 and g2 are independent, then g1 + g2 is uni-
formly distributed over ρ−1({g′1 + g′2}).

8.5 Cyclic groups

Let G be an abelian group. For a ∈ G, define 〈a〉 := {za : z ∈ Z}. It is
easy to see that 〈a〉 is a subgroup of G—indeed, it is the image of the group
homomorphism discussed in Example 8.35. Moreover, 〈a〉 is the smallest
subgroup of G containing a; that is, 〈a〉 contains a, and any subgroup H

of G that contains a must also contain 〈a〉. The subgroup 〈a〉 is called the
subgroup (of G) generated by a. Also, one defines the order of a to be
the order of the subgroup 〈a〉.

More generally, for a1, . . . , ak ∈ G, we define 〈a1, . . . , ak〉 := {z1a1 + · · ·+
zkak : z1, . . . , zk ∈ Z}. One also verifies that 〈a1, . . . , ak〉 is a subgroup
of G, and indeed, is the smallest subgroup of G that contains a1, . . . , ak.
The subgroup 〈a1, . . . , ak〉 is called the subgroup (of G) generated by
a1, . . . , ak.

An abelian group G is said to be cyclic if G = 〈a〉 for some a ∈ G, in
which case, a is called a generator for G. An abelian group G is said to
be finitely generated if G = 〈a1, . . . , ak〉 for some a1, . . . , ak ∈ G.

Multiplicative notation: if G is written multiplicatively, then 〈a〉 := {az :
z ∈ Z}, and 〈a1, . . . , ak〉 := {az1

1 · · · a
zk
k : z1, . . . , zk ∈ Z}; also, for emphasis

and clarity, we use the term multiplicative order of a.

Classification of cyclic groups. We can very easily classify all cyclic
groups. Suppose that G is a cyclic group with generator a. Consider the
map ρ : Z→ G that sends z ∈ Z to za ∈ G. As discussed in Example 8.35,
this map is a group homomorphism, and since a is a generator for G, it must
be surjective.

Case 1: ker(ρ) = {0}. In this case, ρ is an isomorphism of Z with G.

Case 2: ker(ρ) 6= {0}. In this case, since ker(ρ) is a subgroup of Z different
from {0}, by Theorem 8.8, it must be of the form nZ for some n > 0.
Hence, by Theorem 8.26, the map ρ̄ : Zn → G that sends [z]n to za
is an isomorphism of Zn with G.

So we see that a cyclic group is isomorphic either to the additive group Z
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or the additive group Zn, for some positive integer n. We have thus classified
all cyclic groups “up to isomorphism.” From this classification, we obtain:

Theorem 8.29. Let G be an abelian group and let a ∈ G.

(i) If there exists a positive integer m such that ma = 0G, then the least
such positive integer n is the order of a; in this case, we have:

– for any integer z, za = 0G if and only if n | z, and more
generally, for integers z1, z2, z1a = z2a if and only if z1 ≡
z2 (mod n);

– the subgroup 〈a〉 consists of the n distinct elements

0 · a, 1 · a, . . . , (n− 1) · a.

(ii) If G has finite order, then |G| ·a = 0G and the order of a divides |G|.

Proof. Part (i) follows immediately from the above classification, along with
part (vi) of Theorem 8.20. Part (ii) follows from part (i), along with La-
grange’s theorem (Theorem 8.16), since 〈a〉 is a subgroup of G. 2

Example 8.45. The additive group Z is a cyclic group generated by 1. The
only other generator is −1. More generally, the subgroup of Z generated by
m ∈ Z is mZ. 2

Example 8.46. The additive group Zn is a cyclic group generated by [1]n.
More generally, for m ∈ Z, the subgroup of Zn generated by [m]n is equal
to mZn, which by Example 8.21 has order n/ gcd(m,n). In particular, [m]n
generates Zn if and only if m is relatively prime to n, and hence, the number
of generators of Zn is φ(n). 2

Example 8.47. Consider the additive group G := Zn1 × Zn2 , and let α :=
([1]n1 , [1]n2) ∈ Zn1 × Zn2 . For m ∈ Z, we have mα = 0G if and only if
n1 | m and n2 | m. This implies that α generates a subgroup of G of order
lcm(n1, n2).

Suppose that gcd(n1, n2) = 1. From the above discussion, it follows that
G is cyclic of order n1n2. One could also see this directly using the Chinese
remainder theorem: as we saw in Example 8.42, the Chinese remainder
theorem gives us an isomorphism of G with the cyclic group Zn1n2 .

Conversely, if d := gcd(n1, n2) > 1, then all elements of Zn1 × Zn2 have
order dividing n1n2/d, and so Zn1 × Zn2 cannot be cyclic. 2

Example 8.48. For a, n ∈ Z with n > 0 and gcd(a, n) = 1, the definition
in this section of the multiplicative order of α := [a]n ∈ Z∗n is consistent
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with that given in §2.5, and is also the same as the multiplicative order of a
modulo n. Indeed, Euler’s theorem (Theorem 2.15) is just a special case of
part (ii) of Theorem 8.29. Also, α is a generator for Z∗n if and only if a is a
primitive root modulo n. 2

Example 8.49. As we saw in Example 8.24, all elements of Z∗15 have mul-
tiplicative order dividing 4, and since Z∗15 has order 8, we conclude that Z∗15

is not cyclic. 2

Example 8.50. The group Z∗5 is cyclic, with [2] being a generator:

[2]2 = [4] = [−1], [2]3 = [−2], [2]4 = [1]. 2

Example 8.51. Based on the calculations in Example 2.6, we may conclude
that Z∗7 is cyclic, with both [3] and [5] being generators. 2

The following two theorems completely characterize the subgroup struc-
ture of cyclic groups. Actually, we have already proven the results in these
two theorems, but nevertheless, these results deserve special emphasis.

Theorem 8.30. Let G be a cyclic group of infinite order.

(i) G is isomorphic to Z.

(ii) The subgroups of G are in one-to-one correspondence with the non-
negative integers, where each such integer m corresponds to the cyclic
group mG.

(iii) For any two non-negative integers m,m′, mG ⊆ m′G if and only if
m′ | m.

Proof. That G ∼= Z was established in our classification of cyclic groups, it
suffices to prove the other statements of the theorem for G = Z. It is clear
that for any integer m, the subgroup mZ is cyclic, as m is a generator. This
fact, together with Theorem 8.8, establish all the other statements. 2

Theorem 8.31. Let G be a cyclic group of finite order n.

(i) G is isomorphic to Zn.

(ii) The subgroups of G are in one-to-one correspondence with the positive
divisors of n, where each such divisor d corresponds to the subgroup
dG; moreover, dG is a cyclic group of order n/d.

(iii) For each positive divisor d of n, we have dG = G{n/d}; that is, the
kernel of the (n/d)-multiplication map is equal to the image of the
d-multiplication map; in particular, G{n/d} has order n/d.
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(iv) For any two positive divisors d, d′ of n, we have dG ⊆ d′G if and only
if d′ | d.

(v) For any positive divisor d of n, the number of elements of order d in
G is φ(d).

(vi) For any integer m, we have mG = dG and G{m} = G{d}, where
d := gcd(m,n).

Proof. That G ∼= Zn was established in our classification of cyclic groups,
and so it suffices to prove the other statements of the theorem for G = Zn.

The one-to-one correspondence in part (ii) was established in Theorem 8.9.
The fact that dZn is cyclic of order n/d can be seen in a number of ways;
indeed, in Example 8.44 we constructed an isomorphism of Zn/d with dZn.

Part (iii) was established in Example 8.21.
Part (iv) was established in Theorem 8.9.
For part (v), the elements of order d in Zn are all contained in Zn{d},

and so the number of such elements is equal to the number of generators of
Zn{d}. The group Zn{d} is cyclic of order d, and so is isomorphic to Zd,
and as we saw in Example 8.46, this group has φ(d) generators.

Part (vi) was established in Example 8.21. 2

Since cyclic groups are in some sense the simplest kind of abelian group,
it is nice to have some sufficient conditions under which a group must be
cyclic. The following theorems provide such conditions.

Theorem 8.32. If G is an abelian group of prime order, then G is cyclic.

Proof. Let |G| = p. Let a ∈ G with a 6= 0G, and let k be the order of a. As
the order of an element divides the order of the group, we have k | p, and
so k = 1 or k = p. Since a 6= 0G, we must have k 6= 1, and so k = p, which
implies that a generates G. 2

Theorem 8.33. If G1 and G2 are finite cyclic groups of relatively prime
order, then G1 ×G2 is also cyclic.

Proof. This follows from Example 8.47, together with our classification of
cyclic groups. 2

Theorem 8.34. Any subgroup of a cyclic group is cyclic.

Proof. This is just a restatement of part (ii) of Theorem 8.30 and part (ii)
of Theorem 8.31 2

Theorem 8.35. If ρ : G→ G′ is a group homomorphism, and G is cyclic,
then img(G) is cyclic.
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Proof. If G is generated by a, then it is easy to see that the image of ρ is
generated by ρ(a). 2

The next three theorems are often useful in calculating the order of a
group element.

Theorem 8.36. Let G be an abelian group, let a ∈ G be of finite order n,
and let m be an arbitrary integer. Then the order of ma is n/ gcd(m,n).

Proof. By our classification of cyclic groups, we know that the subgroup 〈a〉
is isomorphic to Zn, where under this isomorphism, a corresponds to [1]n and
ma corresponds to [m]n. The theorem then follows from the observations in
Example 8.46. 2

Theorem 8.37. Suppose that a is an element of an abelian group, and for
some prime p and integer e ≥ 1, we have pea = 0G and pe−1a 6= 0G. Then
a has order pe.

Proof. If m is the order of a, then since pea = 0G, we have m | pe. So
m = pf for some f = 0, . . . , e. If f < e, then pe−1a = 0G, contradicting the
assumption that pe−1a 6= 0G. 2

Theorem 8.38. Suppose G is an abelian group with a1, a2 ∈ G such that
a1 is of finite order n1, a2 is of finite order n2, and gcd(n1, n2) = 1. Then
the order of a1 + a2 is n1n2.

Proof. Let m be the order of a1 + a2. It is clear that n1n2(a1 + a2) = 0G,
and hence m divides n1n2.

We claim that 〈a1〉 ∩ 〈a2〉 = {0G}. To see this, suppose a ∈ 〈a1〉 ∩ 〈a2〉.
Then since a ∈ 〈a1〉, the order of a must divide n1. Likewise, since a ∈ 〈a2〉,
the order of a must divide n2. From the assumption that gcd(n1, n2) = 1,
it follows that the order of a must be 1, meaning that a = 0G.

Since m(a1 + a2) = 0G, it follows that ma1 = −ma2. This implies that
ma1 belongs to 〈a2〉, and since ma1 trivially belongs to 〈a1〉, we see that
ma1 belongs to 〈a1〉∩〈a2〉. From the above claim, it follows that ma1 = 0G,
and hence n1 divides m. By a symmetric argument, we see that n2 divides
m. Again, since gcd(n1, n2) = 1, we see that n1n2 divides m. 2

For an abelian group G, we say that an integer k kills G if kG = {0G}.
Consider the set KG of integers that kill G. Evidently, KG is a subgroup of
Z, and hence of the form mZ for a uniquely determined non-negative integer
m. This integer m is called the exponent of G. If m 6= 0, then we see that
m is the least positive integer that kills G.

We first state some basic properties.
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Theorem 8.39. Let G be an abelian group of exponent m.

(i) For any integer k such that kG = {0G}, we have m | k.
(ii) If G has finite order, then m divides |G|.
(iii) If m 6= 0, then for any a ∈ G, the order of a is finite, and the order

of a divides m.

(iv) If G is cyclic, then the exponent of G is 0 if G is infinite, and is |G|
is G is finite.

Proof. Exercise. 2

The next two theorems develop some crucial properties about the struc-
ture of finite abelian groups.

Theorem 8.40. If a finite abelian group G has exponent m, then G contains
an element of order m. In particular, a finite abelian group is cyclic if and
only if its order equals its exponent.

Proof. The second statement follows immediately from the first. For the
first statement, assume that m > 1, and let m =

∏r
i=1 p

ei
i be the prime

factorization of m.
First, we claim that for each i = 1, . . . , r, there exists ai ∈ G such that

(m/pi)ai 6= 0G. Suppose the claim were false: then for some i, (m/pi)a = 0G

for all a ∈ G; however, this contradicts the minimality property in the
definition of the exponent m. That proves the claim.

Let a1, . . . , ar be as in the above claim. Then by Theorem 8.37, (m/pei
i )ai

has order pei
i for each i = 1, . . . , r. Finally, by Theorem 8.38, the group

element

(m/pe1
1 )a1 + · · ·+ (m/per

r )ar

has order m. 2

Theorem 8.41. Let G be a finite abelian group of order n. If p is a prime
dividing n, then G contains an element of order p.

Proof. We can prove this by induction on n.
If n = 1, then the theorem is vacuously true.
Now assume n > 1 and that the theorem holds for all groups of order

strictly less than n. Let a be any non-zero element of G, and let m be the
order of a. Since a is non-zero, we must have m > 1. If p | m, then (m/p)a is
an element of order p, and we are done. So assume that p - m and consider
the quotient group G/H, where H is the subgroup of G generated by a.
Since H has order m, G/H has order n/m, which is strictly less than n,
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and since p - m, we must have p | (n/m). So we can apply the induction
hypothesis to the group G/H and the prime p, which says that there is an
element b ∈ G such that b + H ∈ G/H has order p. If ` is the order of b,
then `b = 0G, and so `b ≡ 0G (mod H), which implies that the order of
b+H divides `. Thus, p | `, and so (`/p)b is an element of G of order p. 2

As a corollary, we have:

Theorem 8.42. Let G be a finite abelian group. Then the primes dividing
the exponent of G are the same as the primes dividing its order.

Proof. Since the exponent divides the order, any prime dividing the exponent
must divide the order. Conversely, if a prime p divides the order, then since
there is an element of order p in the group, the exponent must be divisible
by p. 2

Exercise 8.23. Let G be an abelian group of order n, and let m be an
integer. Show that mG = G if and only if gcd(m,n) = 1.

Exercise 8.24. Let G be an abelian group of order mm′, where
gcd(m,m′) = 1. Consider the map ρ : mG × m′G to G that sends (a, b)
to a+ b. Show that ρ is a group isomorphism.

Exercise 8.25. Let G be an abelian group, a ∈ G, and m ∈ Z, such that
m > 0 and ma = 0G. Let m = pe1

1 · · · per
r be the prime factorization of m.

For i = 1, . . . , r, let fi be the largest non-negative integer such that fi ≤ ei
and m/pfi

i · a = 0G. Show that the order of a is equal to pe1−f1
1 · · · per−fr

r .

Exercise 8.26. Show that for finite abelian groups G1, G2 whose exponents
are m1 and m2, the exponent of G1 ×G2 is lcm(m1,m2).

Exercise 8.27. Give an example of an abelian group G whose exponent is
zero, but where every element of G has finite order.

Exercise 8.28. Show how Theorem 2.11 easily follows from Theorem 8.31.

8.6 The structure of finite abelian groups (∗)
We next state a theorem that classifies all finite abelian groups up to iso-
morphism.

Theorem 8.43 (Fundamental theorem of finite abelian groups). A
finite abelian group (with more than one element) is isomorphic to a direct
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product of cyclic groups

Zp
e1
1
× · · · × Zper

r
,

where the pi are primes (not necessarily distinct) and the ei are positive
integers. This direct product of cyclic groups is unique up to the order of
the factors.

An alternative statement of this theorem is the following:

Theorem 8.44. A finite abelian group (with more than one element) is
isomorphic to a direct product of cyclic groups

Zm1 × · · · × Zmt ,

where each mi > 1, and where for i = 1, . . . , t − 1, we have mi | mi+1.
Moreover, the integers m1, . . . ,mt are uniquely determined, and mt is the
exponent of the group.

Exercise 8.29. Show that Theorems 8.43 and 8.44 are equivalent; that is,
show that each one implies the other. To do this, give a natural one-to-one
correspondence between sequences of prime powers (as in Theorem 8.43)
and sequences of integers m1, . . . ,mt (as in Theorem 8.44), and also make
use of Example 8.47.

Exercise 8.30. Using the fundamental theorem of finite abelian groups
(either form), give short and simple proofs of Theorems 8.40 and 8.41.

We now prove Theorem 8.44, which we break into two lemmas, the first
of which proves the existence part of the theorem, and the second of which
proves the uniqueness part.

Lemma 8.45. A finite abelian group (with more than one element) is iso-
morphic to a direct product of cyclic groups

Zm1 × · · · × Zmt ,

where each mi > 1, and where for i = 1, . . . , t − 1, we have mi | mi+1;
moreover, mt is the exponent of the group.

Proof. Let G be a finite abelian group with more than one element, and let
m be the exponent of G. By Theorem 8.40, there exists an element a ∈ G of
order m. Let A = 〈a〉. Then A ∼= Zm. Now, if A = G, the lemma is proved.
So assume that A ( G.

We will show that there exists a subgroup B of G such that G = A + B

and A ∩ B = {0}. From this, Theorem 8.28 gives us an isomorphism of G
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with A × B. Moreover, the exponent of B is clearly a divisor of m, and so
the lemma will follow by induction (on the order of the group).

So it suffices to show the existence of a subgroup B as above. We prove
this by contradiction. Suppose that there is no such subgroup, and among
all subgroups B such that A∩B = {0}, assume that B is maximal, meaning
that there is no subgroup B′ of G such that B ( B′ and A ∩B′ = {0}. By
assumption C := A+B ( G.

Let d be any element of G that lies outside of C. Consider the quotient
group G/C, and let r be the order of d + C in G/C. Note that r > 1 and
r | m. We shall define a group element d′ with slightly nicer properties
than d, as follows. Since rd ∈ C, we have rd = sa + b for some s ∈ Z and
b ∈ B. We claim that r | s. To see this, note that 0 = md = (m/r)rd =
(m/r)sa + (m/r)b, and since A ∩ B = {0}, we have (m/r)sa = 0, which
can only happen if r | s. That proves the claim. This allows us to define
d′ := d− (s/r)a. Since d ≡ d′ (mod C), we see that d′ + C also has order r
in G/C, but also that rd′ ∈ B.

We next show that A∩(B+〈d′〉) = {0}, which will yield the contradiction
we seek, and thus prove the lemma. Because A ∩ B = {0}, it will suffice
to show that A ∩ (B + 〈d′〉) ⊆ B. Now, suppose we have a group element
b′ + xd′ ∈ A, with b′ ∈ B and x ∈ Z. Then in particular, xd′ ∈ C, and so
r | x, since d′ + C has order r in G/C. Further, since rd′ ∈ B, we have
xd′ ∈ B, whence b′ + xd′ ∈ B. 2

Lemma 8.46. Suppose that G := Zm1 ×· · ·×Zmt and H := Zn1 ×· · ·×Znt

are isomorphic, where the mi and ni are positive integers (possibly 1) such
that mi | mi+1 for i = 1, . . . , t− 1. Then mi = ni for i = 1, . . . , t.

Proof. Clearly,
∏

imi = |G| = |H| =
∏

i ni. We prove the lemma by
induction on the order of the group. If the group order is 1, then clearly
all mi and ni must be 1, and we are done. Otherwise, let p be a prime
dividing the group order. Now, suppose that p divides mr, . . . ,mt but not
m1, . . . ,mr−1, and that p divides ns, . . . , nt but not n1, . . . , ns−1, where r ≤ t
and s ≤ t. Evidently, the groups pG and pH are isomorphic. Moreover,

pG ∼= Zm1 × · · · × Zmr−1 × Zmr/p × · · · × Zmt/p,

and

pH ∼= Zn1 × · · · × Zns−1 × Zns/p × · · · × Znt/p.

Thus, we see that |pG| = |G|/pt−r+1 and |pH| = |H|/pt−s+1, from which it
follows that r = s, and the lemma then follows by induction. 2


